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Background



Introduction to Immuno-Oncology Therapies

• Immuno-oncology therapies (IOs) aim to elicit an immune response to destroy malignant cells, whereas conventional 
anti-cancer therapies act directly on malignant (and healthy) cells

• Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) blocking monoclonal antibodies, are 
intended to rescue the antitumor immune response from co-inhibitory signalling that may occur in the tumor
microenvironment1

• IOs differ from conventional anti-cancer therapies in their mechanism of action and length of action

1. Zhang Y. et al. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol 
Immunol. 2020 Aug;17(8):807–821.
Abbreviations: IO: immuno-oncology therapy; PD-1: programmed cell death protein 1.



Complex Hazard Function Simple Hazard Functions

Constant hazard function (e.g. exponential distribution)

Monotonically increasing hazard function (e.g. Weibull distribution)

Complex hazard function

Uncertainty in IO Survival Extrapolations

• The distinctive mechanism of action for IOs may be associated with long-term survival and/or delayed onset of 
treatment effects 

• These characteristics of IOs may result in more complex hazard functions compared with conventional anti-cancer 
therapy that standard parametric functions may not accurately reflect

Abbreviations: IO: immuno-oncology therapy. 

Hazard function = Event probability at time (t) conditional upon survival until time (t)



1. Latimer N. NICE DSU Technical Support Document 14: Survival Analysis for Economic Evaluations Alongside Clinical Trials – Extrapolation With Patient-Level Data, Version 2: National 
Institute for Health and Care Excellence, Decision Support Unit, 2013; 2. Rutherford MJ. et al. NICE DSU Technical Support Document 21. Flexible Methods for Survival Analysis. 2020.
Abbreviations: KM: Kaplan–Meier. 

Piecewise Survival Models (1/2)

• Piecewise survival models have been suggested as a flexible alternative to standard parametric models for modeling 
complex hazard profiles1

• One piecewise approach uses the Kaplan–Meier (KM) curve for the initial section of the extrapolation, and different 
survival distributions are then fitted from and adjoined to a pre-determined point on the KM curve2

Survival probability at time (t) = Survival at end of section 1 x Survival at time (t) in section 2



Piecewise Survival Models (2/2)

• Piecewise models are more flexible than 
standard parametric models

• They may be more biologically plausible for 
IOs with distinct mechanisms of action

• Other flexible models can also be 
implemented in a piecewise approach 

Strengths

• There are no definitive rules for the selection 
of the ‘best’ cut-point as found in a review of 
survival extrapolation methods in the 20 most 
recent oncology submissions to the National 
Institute for Health and Care Excellence 
(NICE), as of 10 December, 20211

• Numbers at risk on which to fit parametric 
models are reduced in later segments of the 
KM curve

• If the cut-point or models used for each 
section are not appropriate, results will not 
be reliable

Limitations

The selection of cut-points is often a point of contention when using piecewise models

1. Liu, B. L., and Matthew Griffiths. "EE111 Adoption of Piecewise Modelling: A Review of Nice Health Technology Appraisals in Oncology." Value in Health 25.7 (2022): S356.
Abbreviations: IO: immuno-oncology therapy; KM: Kaplan–Meier; NICE: National Institute for Health and Care Excellence. 



Objective

The objective of this study was to answer the following 
questions:

1. How accurate are piecewise model long-term survival 
estimates compared with standard parametric model 
estimates for an IO 

2. How influential is the selection of cut-point on 
long-term survival estimates and accuracy  

Abbreviations: IO: immuno-oncology therapy. 



Methods



• KEYNOTE-024 investigated pembrolizumab, a PD-1 monoclonal antibody for the treatment of patients with previously 
untreated advanced non-small cell lung cancer, and was selected as a case study given multiple data-cuts were 
available1,2

• Published overall survival (OS) data are available from two data-cuts

– 1st data-cut: median follow-up 25.2 months (longest duration of published OS data was 33.0 months)

– 2nd data-cut: median follow-up 59.9 months (longest duration of published OS data was 65.8 months)

KEYNOTE-024

1. Reck M. et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score 
of 50% or Greater. J Clin Oncol. 2019 Mar 1;37(7):537–546; 2. Reck M. et al. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer 
With PD-L1 Tumor Proportion Score ≥50. J Clin Oncol. 2021 Jul 20;39(21):2339–2349. 
Abbreviations: IO: immuno-oncology therapy; OS: overall survival; PD-1: programmed cell death protein 1.



• Published overall survival (OS) KM curves of pembrolizumab for each KEYNOTE-24 data-cut were digitized1,2

• Pseudo individual patient data (IPD) were generated using the algorithm described by Guyot et al. (2012)3

• The six standard parametric models were fitted to the pseudo IPD derived from the 25.2-month data-cut

• Statistical fit was assessed for every curve for each data-cut using the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC)

Methodology – Standard Parametric Models

1. Reck M. et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score 
of 50% or Greater. J Clin Oncol. 2019 Mar 1;37(7):537–546; 2. Reck M. et al. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer 
With PD-L1 Tumor Proportion Score ≥50. J Clin Oncol. 2021 Jul 20;39(21):2339–2349; 3. Guyot P. et al. Enhanced Secondary Analysis of Survival Data: Reconstructing the Data from 
Published Kaplan–Meier Survival Curves. BMC medical research methodology 2012;12:1–13.
Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; IPD: individual patient data; KM: Kaplan–Meier; OS: overall survival.

Standard Parametric
Models

• Exponential
• Weibull
• LogNormal
• LogLogistic
• Gompertz
• GenGamma



• For the piecewise models, 3-, 8- and 14-months were chosen as cut-points by visually inspecting where distinct 
changes in the hazard profile occurred on smoothed, cumulative, and log cumulative hazard plots of the pseudo IPD 
from the 25.2-month data-cut

• From the cut-points onwards, the six standard parametric tails were fitted to the remaining KM data and adjoined to 
the KM curves at the respective cut-point

Methodology – Piecewise Models

Abbreviations: IPD: individual patient data; KM: Kaplan–Meier.

KM Curves

• 3-month cut-point
• 8-month cut-point
• 14-month cut-point

Parametric Tails

• Exponential
• Weibull
• LogNormal
• LogLogistic
• Gompertz
• GenGamma

+

Piecewise Models



1. Reck M. et al. Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥50. J Clin Oncol. 2021 
Jul 20;39(21):2339–2349. 
Abbreviations: KM: Kaplan–Meier; LY: life year; OS: overall survival.

Methodology – Life Year Calculations

1. The predicted cumulative life years (LYs) were 
calculated for each model over a 65.8-month time 
horizon (longest duration of published OS from the 
59.9-month data-cut)1

2. Predicted LYs were then compared to 
realized cumulative LYs over this period 
(calculated as an absolute percentage difference) 
to determine long-term survival estimate accuracy

Predicted cumulative 
life years

Realized cumulative 
life years

KM Data Extrapolation KM Data

KEYNOTE-024 1st data-cut (25.2 months) KEYNOTE-024 2nd data-cut (59.9 months)



Results



Results – Survival Extrapolations (Visual Fit)

Abbreviations: KM: Kaplan–Meier.

Extrapolations derived from 25.2 month data-cut KM data from 25.2 month data-cut



Results – Survival Extrapolations (Statistical Fit, 1/2)

Type of model Parametric model AIC BIC AIC rank BIC rank

Standard parametric

Exponential 681.55 684.59 6 1

Weibull 680.11 686.18 4 5

LogNormal 679.97 686.04 3 4

LogLogistic 678.80 684.88 2 3

Gompertz 678.58 684.65 1 2

GenGamma 680.92 690.04 5 6

Piecewise model with 
3-month cut-point

Piecewise Exponential 542.41 545.45 5 1

Piecewise Weibull 541.87 547.95 4 5

Piecewise LogNormal 541.61 547.68 3 4

Piecewise LogLogisitic 541.05 547.12 2 3

Piecewise Gompertz 540.91 546.98 1 2

Piecewise GenGamma 542.95 552.06 6 6

Goodness-of-Fit Statistics (1/2)

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion.

Lower AIC/BIC indicate 
better fit. However standard 

models and models with 
different cut-points cannot 

be directly compared due to 
differing numbers at risk on 
which the models were fit



Type of model Parametric model AIC BIC AIC rank BIC rank

Piecewise model with 
8-month cut-point

Piecewise Exponential 340.90 343.94 3 1

Piecewise Weibull 342.75 348.83 6 5

Piecewise LogNormal 339.59 345.67 1 2

Piecewise LogLogisitic 341.58 347.66 4 3

Piecewise Gompertz 342.59 348.66 5 4

Piecewise GenGamma 340.53 349.64 2 6

Piecewise model with 
14-month cut-point

Piecewise Exponential 1019.87 1022.90 6 6

Piecewise Weibull 1010.66 1016.73 2 2

Piecewise LogNormal 1012.06 1018.13 5 4

Piecewise LogLogisitic 1009.58 1015.65 1 1

Piecewise Gompertz 1011.17 1017.25 3 3

Piecewise GenGamma 1011.19 1020.30 4 5

Results – Survival Extrapolations (Statistical Fit, 2/2)

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion.

Goodness-of-Fit Statistics (2/2)



Results – Survival Extrapolations (Prediction Accuracy)

Abbreviations: KM: Kaplan–Meier.

KM data from 59.9 month data-cutExtrapolations derived from 25.2 month data-cut



Results – Life Year Comparisons

• The realized LYs from the KEYNOTE-024 
59.9-month data-cut were 2.71

• Average predicted LYs across the 
standard parametric models were 2.70. 
Average mean LYs varied across 
piecewise models with different 
cut-points:

– 3-month: 2.72

– 8-month: 2.68

– 14-month: 2.82

• The most accurate model was the 8-
month piecewise model with a 
LogNormal tail (absolute % LY 
difference=0.24%)

• On average, models based on the 
14-month cut-point performed the worst
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St n  r  p r  etric Piece ise  o el  ith 3  onth

cut point

Piece ise  o el  ith    onth

cut point

Piece ise  o el  ith 1   onth

cut point

 
 
 
 
  
  
  

  
 
  
  
  
  
 
 
 

                   

Mean=3.50% Mean=3.53% Mean=3.06% Mean=5.39%

Over-prediction

Under-prediction

Mean absolute % LY difference between predicted and realized LYs

Abbreviations: LY: life year.



Summary and Conclusions



Conclusions

The piecewise model with 8-month cut-point and LogNormal tail 
performed the best, followed by standard Generalized Gamma and 
LogLogistic parametric models, but the differences among them 
were marginal (0.24% vs 0.26% vs 0.80%) 

Despite being more flexible, the piecewise models in this 
case study did not perform better than standard parametric models 
in estimating long-term survival based on average predicted LYs, 
although the 3- and 8-month cut-point models performed similarly 
to standard parametric models

The 14-month cut-point models on average performed the worst. 
The reduced accuracy at later timepoints likely reflected the reduced 
number at risk on which to fit the parametric tails

Abbreviations: LY: life year.

In terms of mean absolute % LY difference between predicted and 
realized LYs, the 3-month cut-point models performed similarly to 
the standard parametric models, and the 8-month cut-point models 
performed better. The spread in under/over prediction also appeared 
to decrease with the 3- and 8-month cut-point models
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