A Case Study Using KEYNOTE-024 to Examine the Impact of Cut-Point Selection on Long-Term Survival Estimates from Piecewise Modeling

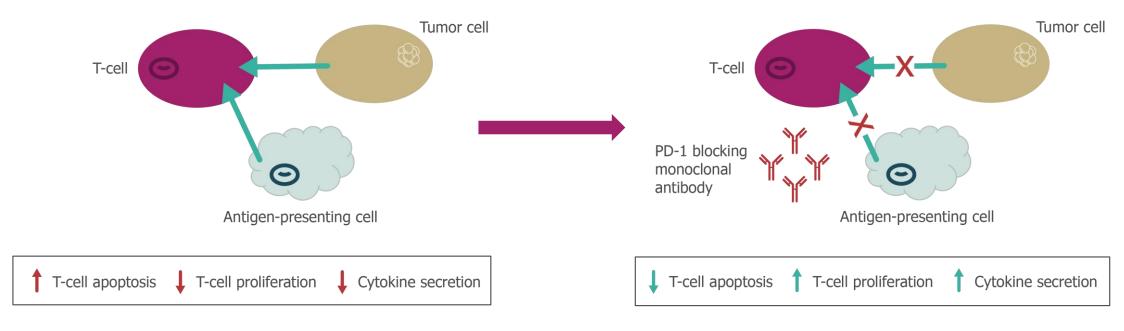
08 May 2023, ISPOR Podium Presentation, P14

Connor Davies and Blake Liu Costello Medical, Boston, MA, USA

Background

Introduction to Immuno-Oncology Therapies

- Immuno-oncology therapies (IOs) aim to elicit an immune response to destroy malignant cells, whereas conventional anti-cancer therapies act directly on malignant (and healthy) cells
- Immune checkpoint inhibitors, such as programmed cell death protein 1 (PD-1) blocking monoclonal antibodies, are
 intended to rescue the antitumor immune response from co-inhibitory signalling that may occur in the tumor
 microenvironment¹
- IOs differ from conventional anti-cancer therapies in their mechanism of action and length of action

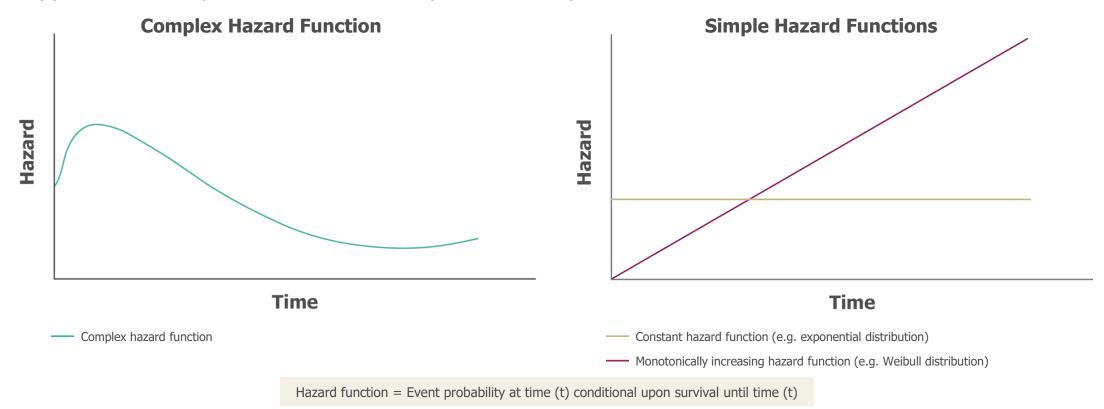


^{1.} Zhang Y. *et al.* The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020 Aug;17(8):807–821.

Abbreviations: IO: immuno-oncology therapy; PD-1: programmed cell death protein 1.

Uncertainty in IO Survival Extrapolations

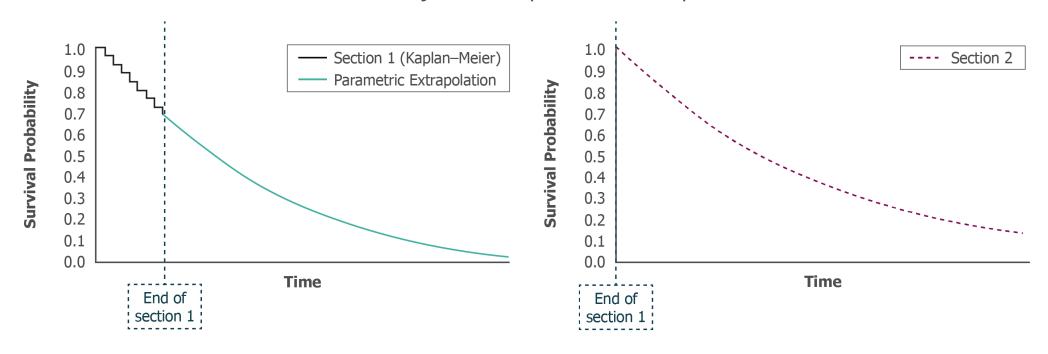
- The distinctive mechanism of action for IOs may be associated with long-term survival and/or delayed onset of treatment effects
- These characteristics of IOs may result in more complex hazard functions compared with conventional anti-cancer therapy that standard parametric functions may not accurately reflect



Abbreviations: IO: immuno-oncology therapy.

Piecewise Survival Models (1/2)

- Piecewise survival models have been suggested as a flexible alternative to standard parametric models for modeling complex hazard profiles¹
- One piecewise approach uses the Kaplan–Meier (KM) curve for the initial section of the extrapolation, and different survival distributions are then fitted from and adjoined to a pre-determined point on the KM curve²



Survival probability at time (t) = Survival at end of section 1 x Survival at time (t) in section 2

^{1.} Latimer N. NICE DSU Technical Support Document 14: Survival Analysis for Economic Evaluations Alongside Clinical Trials – Extrapolation With Patient-Level Data, Version 2: National Institute for Health and Care Excellence, Decision Support Unit, 2013; 2. Rutherford MJ. *et al.* NICE DSU Technical Support Document 21. Flexible Methods for Survival Analysis. 2020. **Abbreviations:** KM: Kaplan–Meier.

Piecewise Survival Models (2/2)

Strengths

- Piecewise models are more flexible than standard parametric models
- They may be more biologically plausible for IOs with distinct mechanisms of action
- Other flexible models can also be implemented in a piecewise approach

- There are no definitive rules for the selection of the 'best' cut-point as found in a review of survival extrapolation methods in the 20 most recent oncology submissions to the National Institute for Health and Care Excellence (NICE), as of 10 December, 2021¹
- Numbers at risk on which to fit parametric models are reduced in later segments of the KM curve
- If the cut-point or models used for each section are not appropriate, results will not be reliable

The selection of cut-points is often a point of contention when using piecewise models

Objective

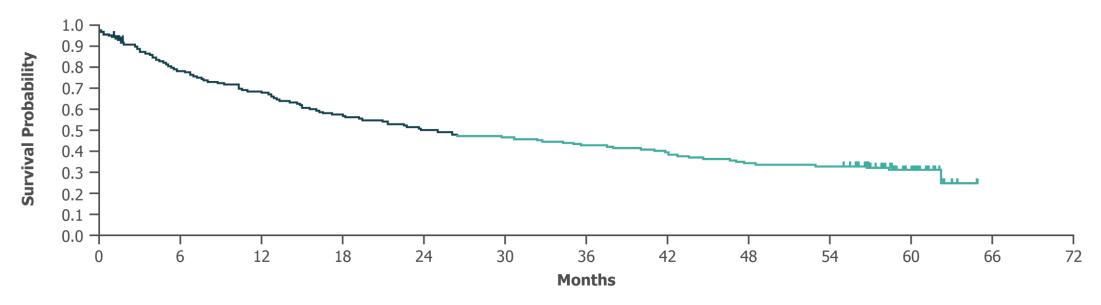
The objective of this study was to answer the following questions:

- 1. How accurate are piecewise model long-term survival estimates compared with standard parametric model estimates for an IO
- 2. How influential is the selection of cut-point on long-term survival estimates and accuracy

Methods

KEYNOTE-024

- KEYNOTE-024 investigated pembrolizumab, a PD-1 monoclonal antibody for the treatment of patients with previously untreated advanced non-small cell lung cancer, and was selected as a case study given multiple data-cuts were available^{1,2}
- Published overall survival (OS) data are available from two data-cuts
 - 1st data-cut: median follow-up 25.2 months (longest duration of published OS data was 33.0 months)
 - 2nd data-cut: median follow-up 59.9 months (longest duration of published OS data was 65.8 months)



^{1.} Reck M. *et al.* Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J Clin Oncol. 2019 Mar 1;37(7):537–546; 2. Reck M. *et al.* Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥50. J Clin Oncol. 2021 Jul 20;39(21):2339–2349.

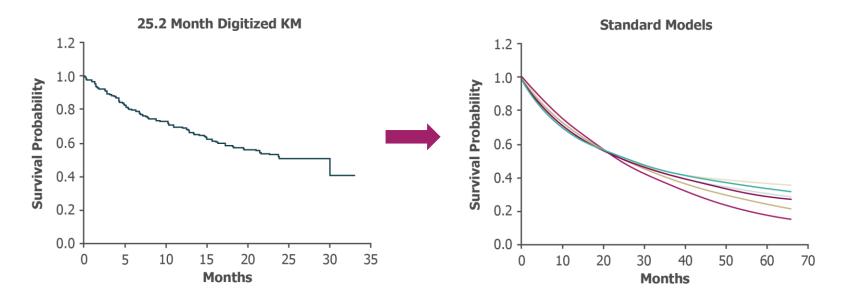
Abbreviations: IO: immuno-oncology therapy; OS: overall survival; PD-1: programmed cell death protein 1.

Methodology – Standard Parametric Models

- Published overall survival (OS) KM curves of pembrolizumab for each KEYNOTE-24 data-cut were digitized^{1,2}
- Pseudo individual patient data (IPD) were generated using the algorithm described by Guyot et al. (2012)³
- The six standard parametric models were fitted to the pseudo IPD derived from the 25.2-month data-cut
- Statistical fit was assessed for every curve for each data-cut using the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)

Standard Parametric Models

- Exponential
- Weibull
- LogNormal
- LogLogistic
- Gompertz
- GenGamma

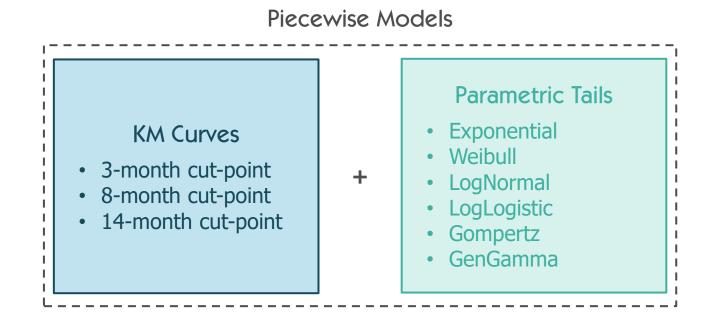


^{1.} Reck M. *et al.* Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J Clin Oncol. 2019 Mar 1;37(7):537–546; 2. Reck M. *et al.* Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥50. J Clin Oncol. 2021 Jul 20;39(21):2339–2349; 3. Guyot P. *et al.* Enhanced Secondary Analysis of Survival Data: Reconstructing the Data from Published Kaplan–Meier Survival Curves. BMC medical research methodology 2012;12:1−13.

Abbreviations: AIC: Akaike information criterion; BIC: Bayesian information criterion; IPD: individual patient data; KM: Kaplan–Meier; OS: overall survival.

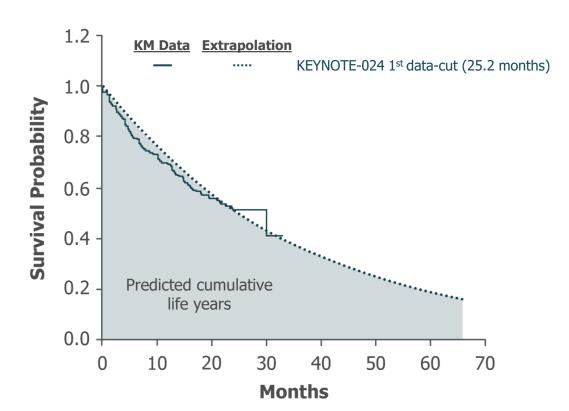
Methodology – Piecewise Models

- For the piecewise models, 3-, 8- and 14-months were chosen as cut-points by visually inspecting where distinct changes in the hazard profile occurred on smoothed, cumulative, and log cumulative hazard plots of the pseudo IPD from the 25.2-month data-cut
- From the cut-points onwards, the six standard parametric tails were fitted to the remaining KM data and adjoined to the KM curves at the respective cut-point

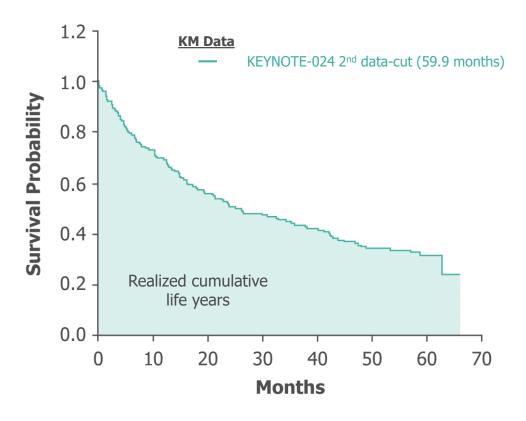


Methodology – Life Year Calculations

1. The predicted cumulative life years (LYs) were calculated for each model over a 65.8-month time horizon (longest duration of published OS from the 59.9-month data-cut)¹



2. Predicted LYs were then compared to realized cumulative LYs over this period (calculated as an absolute percentage difference) to determine long-term survival estimate accuracy

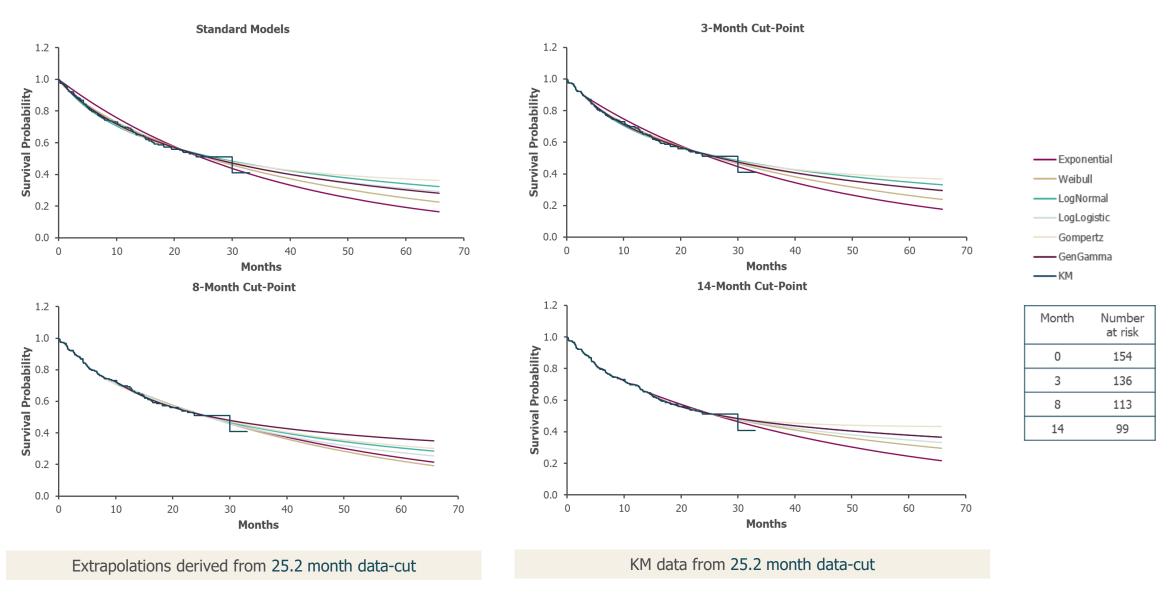


^{1.} Reck M. *et al.* Five-Year Outcomes With Pembrolizumab Versus Chemotherapy for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥50. J Clin Oncol. 2021 Jul 20;39(21):2339–2349.

Abbreviations: KM: Kaplan-Meier; LY: life year; OS: overall survival.

Results

Results – Survival Extrapolations (Visual Fit)



Abbreviations: KM: Kaplan-Meier.

Results – Survival Extrapolations (Statistical Fit, 1/2)

Goodness-of-Fit Statistics (1/2)

Type of model	Parametric model	AIC	BIC	AIC rank	BIC rank
Standard parametric	Exponential	681.55	684.59	6	1
	Weibull	680.11	686.18	4	5
	LogNormal	679.97	686.04	3	4
	LogLogistic	678.80	684.88	2	3
	Gompertz	678.58	684.65	1	2
	GenGamma	680.92	690.04	5	6
Piecewise model with 3-month cut-point	Piecewise Exponential	542.41	545.45	5	1
	Piecewise Weibull	541.87	547.95	4	5
	Piecewise LogNormal	541.61	547.68	3	4
	Piecewise LogLogisitic	541.05	547.12	2	3
	Piecewise Gompertz	540.91	546.98	1	2
	Piecewise GenGamma	542.95	552.06	6	6

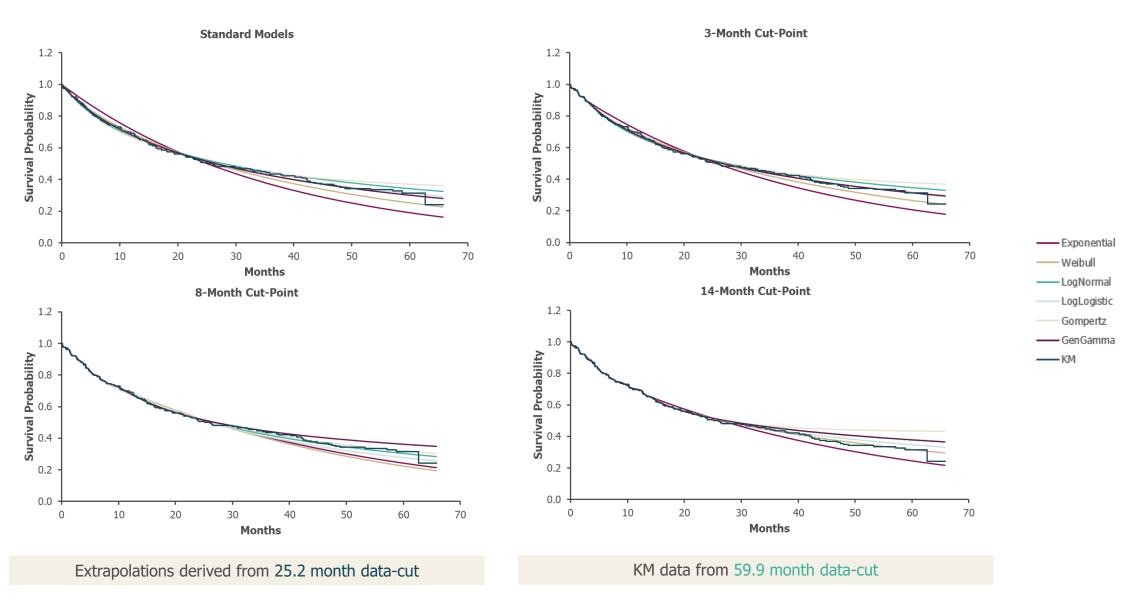
Lower AIC/BIC indicate better fit. However standard models and models with different cut-points cannot be directly compared due to differing numbers at risk on which the models were fit

Results – Survival Extrapolations (Statistical Fit, 2/2)

Goodness-of-Fit Statistics (2/2)

Type of model	Parametric model	AIC	BIC	AIC rank	BIC rank
Piecewise model with 8-month cut-point	Piecewise Exponential	340.90	343.94	3	1
	Piecewise Weibull	342.75	348.83	6	5
	Piecewise LogNormal	339.59	345.67	1	2
	Piecewise LogLogisitic	341.58	347.66	4	3
	Piecewise Gompertz	342.59	348.66	5	4
	Piecewise GenGamma	340.53	349.64	2	6
Piecewise model with 14-month cut-point	Piecewise Exponential	1019.87	1022.90	6	6
	Piecewise Weibull	1010.66	1016.73	2	2
	Piecewise LogNormal	1012.06	1018.13	5	4
	Piecewise LogLogisitic	1009.58	1015.65	1	1
	Piecewise Gompertz	1011.17	1017.25	3	3
	Piecewise GenGamma	1011.19	1020.30	4	5

Results – Survival Extrapolations (Prediction Accuracy)



Abbreviations: KM: Kaplan-Meier.

Results – Life Year Comparisons

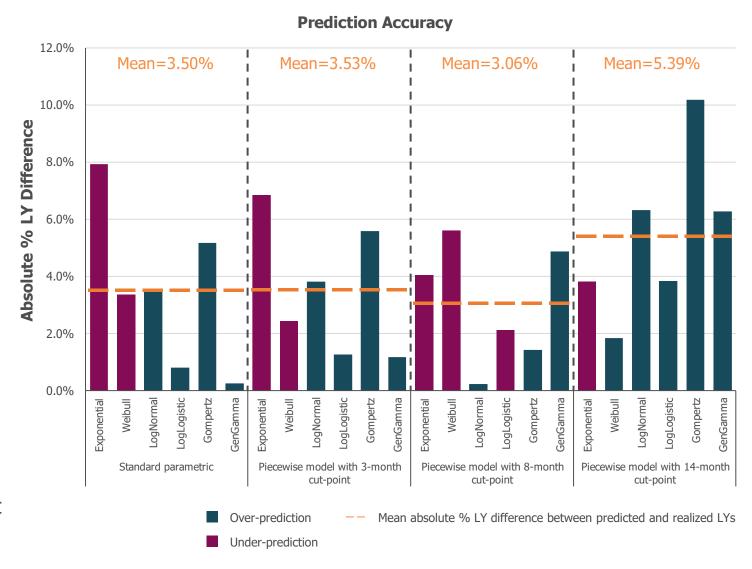
- The realized LYs from the KEYNOTE-024
 59.9-month data-cut were 2.71
- Average predicted LYs across the standard parametric models were 2.70.
 Average mean LYs varied across piecewise models with different cut-points:

- 3-month: 2.72

- 8-month: 2.68

- 14-month: 2.82

- The most accurate model was the 8month piecewise model with a LogNormal tail (absolute % LY difference=0.24%)
- On average, models based on the 14-month cut-point performed the worst



Summary and Conclusions

Conclusions

Despite being more flexible, the piecewise models in this case study did not perform better than standard parametric models in estimating long-term survival based on average predicted LYs, although the 3- and 8-month cut-point models performed similarly to standard parametric models

In terms of mean absolute % LY difference between predicted and realized LYs, the 3-month cut-point models performed similarly to the standard parametric models, and the 8-month cut-point models performed better. The spread in under/over prediction also appeared to decrease with the 3- and 8-month cut-point models

The piecewise model with 8-month cut-point and LogNormal tail performed the best, followed by standard Generalized Gamma and LogLogistic parametric models, but the differences among them were marginal (0.24% vs 0.26% vs 0.80%)

The 14-month cut-point models on average performed the worst. The reduced accuracy at later timepoints likely reflected the reduced number at risk on which to fit the parametric tails

Acknowledgements

Matt Griffiths

Alex Porteous

Hannah Harrington

Joanna Honc

Contact details: connor.davies@costellomedical.com

Thank You